Ancestral Benders’ Cuts and Multi-term Disjunctions for Mixed-Integer Recourse Decisions in Stochastic Programming
نویسندگان
چکیده
This paper focuses on solving two-stage stochastic mixed integer programs (SMIPs) with general mixed integer decision variables in both stages. We develop a decomposition algorithm in which the first stage approximation is solved using a branch-and-bound tree with nodes inheriting Benders’ cuts that are valid for their ancestor nodes. In addition, we develop two closely related convexification schemes which use multi-term disjunctive cuts to obtain approximations of the second stage mixed-integer programs. We prove that the proposed methods are finitely convergent. One of the main advantages of our decomposition scheme is that we use a Benders-based branch-and-cut approach in which linear programming approximations are strengthened sequentially. Moreover as in many decomposition schemes, these subproblems can be solved in parallel. We also illustrate these algorithms using several variants of an SMIP example from the literature, and present preliminary evidence of the scalability of these algorithms as the number of scenarios increases.
منابع مشابه
Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse
With stochastic integer programming as the motivating application, we investigate techniques to use integrality constraints to obtain improved cuts within a Benders decomposition algorithm. We compare the effect of using cuts in two ways: (i) cut-and-project, where integrality constraints are used to derive cuts in the extended variable space, and Benders cuts are then used to project the resul...
متن کاملDecomposition algorithms for two-stage chance-constrained programs
We study a class of chance-constrained two-stage stochastic optimization problems where second-stage feasible recourse decisions incur additional cost. In addition, we propose a new model, where “recovery” decisions are made for the infeasible scenarios to obtain feasible solutions to a relaxed second-stage problem. We develop decomposition algorithms with specialized optimality and feasibility...
متن کاملBenders Decomposition Algorithm for Competitive Supply Chain Network Design under Risk of Disruption and Uncertainty
In this paper, bi-level programming is proposed for designing a competitive supply chain network. A two-stage stochastic programming approach has been developed for a multi-product supply chain comprising a capacitated supplier, several distribution centers, retailers and some resellers in the market. The proposed model considers demand’s uncertainty and disruption in distribution centers and t...
متن کاملSequential Cut Refinement Method in Multistage Stochastic Integer Programming: Application to a Unit Commitment Problem
2 Benders' method usually divides the collection of decision variables of a two-stage mathematical problem into two sets: a first set that comprises the collection of variables that represent first-stage decisions and a second set that includes the collection of variables that represent recourse actions or second-stage decisions. Usually, integer variables appear in the first set whereas the se...
متن کاملScenario-based modeling for multiple allocation hub location problem under disruption risk: multiple cuts Benders decomposition approach
The hub location problem arises in a variety of domains such as transportation and telecommunication systems. In many real-world situations, hub facilities are subject to disruption. This paper deals with the multiple allocation hub location problem in the presence of facilities failure. To model the problem, a two-stage stochastic formulation is developed. In the proposed model, the number of ...
متن کامل